1. Cours 3: Relations binaires sur un ensemble.

1.1. Notion de relation:

On appelle relation d'un ensemble A vers un ensemble B toute correpondance \mathcal{R} , qui lie des éléments de A à des éléments de B.

*On dit que A est l'ensemble de départ et B est l'ensemble d'arrivée de la relation \mathcal{R} . *Si x est lié à y par la relation \mathcal{R} , on dit que x est en relation \mathcal{R} avec y, ou (x,y) vérifie la relation \mathcal{R} et on écrit: $x\mathcal{R}y$ ou $\mathcal{R}(x,y)$, sinon on écrit: $x\mathcal{R}y$ ou $\mathcal{R}(x,y)$.

*Une relation de A vers A est dite relation sur A.

Exemples:

1) La correspondance \mathcal{R} qui lie les entiers à leurs multiples est une relation sur \mathbb{Z} , qui est appelée relation de divisibilité et notée \mathcal{R}_d .

On a par exemple $1\mathcal{R}x$ et $x\mathcal{R}0$ pour tout $x \in \mathbb{Z}$.

2) La correspondance \mathcal{R}' qui lie les chiffres aux voyelles utilisées pour écrire le chiffre en toutes lettres est une relation de l'ensemble $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vers l'ensemble $\{a, e, i, o, u, y\}$

On a par exemple $0\mathcal{R}'e$, $0\mathcal{R}'o$, $0\mathcal{R}'a$, $9\mathcal{R}'y$, $6\mathcal{R}'i$ et $1\mathcal{R}'u$

3) La correspondance S qui lie les nombres réels ayant les mêmes carrés est une relation sur \mathbb{R} .

On a par exemple 1S1, 1S3 et 2S(-2).

1.1.1. Graphe d'une relation

Soit \mathcal{R} une relation d'un ensemble A vers un ensemble B.

1) Le graphe de R - noté G_R - est l'ensemble défini par:

$$G_{\mathcal{R}} = \{(x, y) \in A \times B / x\mathcal{R}y\}$$

Exemples

- 1) Reprenons la relation \mathcal{R} de l'exemple 1 précédent, alors: $G_{\mathcal{R}} = \{(x, y) \in \mathbb{Z}^2 \mid x \text{ divise } y\}$. Par exemple $(3, -21) \in G_{\mathcal{R}}$ et $(3, 20) \notin G_{\mathcal{R}}$
- 2) Si on reprend la relation \mathcal{R}' donnée par l'exemple 2 précédent, on aura: $G_{\mathcal{R}'} = \{ (0, e), (0, o), (1, u), (2, e), (2, u), (3, o), (3, i), (4, u), (4, a), (4, e), (5, i), (6, i), (7, e), (8, u), (8, i), (9, e), (9, u) \}$

3) Pour l'exemple 3 précédent le graphe $G_{\mathcal{S}}$ est le suivant:

$$G_{\mathcal{S}} = \{(x, -x), (x, x) \mid x \in \mathbb{R}\}$$

Remarque: Une relation \mathcal{R} est entièrement déterminée par son graphe, la raison pour laquelle, on identifie \mathcal{R} à $G_{\mathcal{R}}$ et on dit qu'une relation de A vers B est une partie de $A \times B$. Alors $\mathcal{R} = \mathcal{R}' \iff G_{\mathcal{R}} = G_{\mathcal{R}'}$.

1.2. Relations sur un ensemble

Définitions: Une relation \mathcal{R} sur un ensemble A est dite:

- 1) Réflexive $si \ \forall \ x \in A : x\mathcal{R}x$.
- 2) Symétrique si $\forall x, y \in A : x\mathcal{R}y \Rightarrow y\mathcal{R}x$.
- 3) Antisymétrique si $\forall x, y \in A : (x\mathcal{R}y \land y\mathcal{R}x) \Rightarrow x = y$.
- 4) Transitive $si \ \forall \ x, y, z \in A : (x \mathcal{R} y \land y \mathcal{R} z) \Rightarrow x \mathcal{R} z.$

Exemples

- 1) Soit la relation \mathcal{R} définie sur \mathbb{Z} par: $x\mathcal{R}y \Leftrightarrow x$ divise y
- * Soit $x \in \mathbb{Z}$, on a x divise x (même 0 divise 0). donc $\forall x \in \mathbb{Z} : x\mathcal{R}x$, alors \mathcal{R} est réflexive.
- * Soit $x, y \in \mathbb{Z}$, on a $x\mathcal{R}y \Rightarrow (x \text{ divise } y)$ $\Rightarrow (y \text{ divise } x)$

par exemple 1 divise 4 et 4 ne divise pas 1

C.à.d: $\exists x, y \in \mathbb{Z} : x\mathcal{R}y \wedge \overline{y\mathcal{R}x}$, alors \mathcal{R} n'est pas symétrique.

* Soit
$$x, y \in \mathbb{Z}$$
, on a $(x\mathcal{R}y) \land (y\mathcal{R}x) \Rightarrow (x \text{ divise } y) \land (y \text{ divise } x) \Rightarrow (y = x)$

par exemple (1 divise -1) et (-1 divise 1) et $1 \neq -1$

C.à.d: $\exists \ x,y \in \mathbb{Z}: x\mathcal{R}y \land y\mathcal{R}x \land x \neq y$, alors \mathcal{R} n'est pas antisymétrique.

* Soit
$$x, y, z \in \mathbb{Z}$$
, on a $(x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow (x \text{ divise } y) \land (y \text{ divise } z)$
 $\Rightarrow (x \text{ divise } z)$
 $\Rightarrow x\mathcal{R}z$

Alors \mathcal{R} est transitive.

- 2) La relation S donnée sur \mathbb{R} par: $xSy \Leftrightarrow x^2 = y^2$
- * Soit $x \in \mathbb{R}$, on a $x^2 = x^2$

donc $\forall x \in \mathbb{R} : xSx$, alors S est réflexive.

* Soit
$$x, y \in \mathbb{R}$$
, on a: $xSy \Rightarrow x^2 = y^2$
 $\Rightarrow y^2 = x^2$
 $\Rightarrow ySx$

Alors S est symétrique.

* Soit
$$x, y \in \mathbb{R}$$
, on a $(xSy) \land (ySx) \Rightarrow (x^2 = y^2) \land (y^2 = x^2)$
 $\Rightarrow (y = x)$
par exemple $(-2)^2 = 2^2$ et $2^2 = (-2)^2$ et $(-2) \neq 2$.
C.à.d: $\exists \ x, y \in \mathbb{R} : xSy \land ySx \land x \neq y$, alors S n'est pas antisymétrique.

* Soit
$$x, y, z \in \mathbb{R}$$
, on a $(xSy) \land (ySz) \Rightarrow (x^2 = y^2) \land (y^2 = z^2)$
 $\Rightarrow x^2 = z^2$
 $\Rightarrow xSz$

Alors S est transitive.

- 3) Soit la relation \mathcal{R}'' définie sur \mathbb{Z} par: $a\mathcal{R}''b \Leftrightarrow (a-b \text{ est impair})$.
- * Soit $a \in \mathbb{Z}$, on n'a pas (a a est impair).

par exemple 1-1 n'est pas impair.

C.à.d: $\exists a \in \mathbb{Z}$: $\overline{a\mathcal{R}''a}$, alors \mathcal{R}'' n'est pas réflexive.

* Soit
$$a, b \in \mathbb{Z}$$
, on a: $a\mathcal{R}''b \Rightarrow a - b$ est impair $\Rightarrow b - a$ est impair $\Rightarrow b\mathcal{R}''a$

Alors \mathcal{R}'' est symétrique.

* Soit
$$a, b \in \mathbb{Z}$$
, on a $a\mathcal{R}''b \wedge b\mathcal{R}''a \Rightarrow (a - b \text{ est impair}) \wedge (b - a \text{ est impair}) \Rightarrow (a = b)$

par exemple (6-1 est impair) et (1-6 est impair) et $1 \neq 6$

C.à.d: $\exists a, b \in \mathbb{Z}$: $a\mathcal{R}''b \wedge b\mathcal{R}''a \wedge a \neq b$, alors \mathcal{R}'' n'est pas antisymétrique.

* Soit
$$a, b, c \in \mathbb{Z}$$
, on a $a\mathcal{R}''b \wedge b\mathcal{R}''c \Rightarrow (a - b \text{ est impair}) \wedge (b - c \text{ est impair}) \Rightarrow a - c \text{ est impair}$

par exemple (7-4 est impair) et (4-1 est impair) et (7-1 n'est pas impair)C.à.d: $\exists a, b, c \in \mathbb{Z}$: $a\mathcal{R}''b \wedge b\mathcal{R}''c \wedge \overline{a\mathcal{R}''c}$, alors \mathcal{R}'' n'est pas transitive.

Remarque: Une relation peut être non symétrique et non antisymétrique. (voir exemple 1)

1.3. Relation d'équivalence, classes d'équivalence et ensemble quotient

Soit \mathcal{R} une relation sur un ensemble A

- 1) \mathcal{R} est dite relation d'équivalence si \mathcal{R} est réflexive, symétrique et transitive.
- 2) Si \mathcal{R} est une relation d'équivalence, alors
- 2.1) Pour chaque $a \in A$ l'ensemble $\overset{\bullet}{a} = \{x \in A \mid x \mathcal{R}a\}$ est appelé classe d'équivalence

de a modulo \mathcal{R} .

2.2) L'ensemble
$$A_{/\mathcal{R}} = \left\{ \stackrel{\bullet}{a} \mid a \in A \right\}$$
 est appelé quotient de A par \mathcal{R} .

Exemples:

1) La relation S donnée sur \mathbb{R} par: $xSy \Leftrightarrow x^2 = y^2$ est une relation d'équivalence.

Pour
$$a \neq 0$$
, on a: $\overset{\bullet}{a} = \{x \in \mathbb{R} \ / \ xSa\} = \{x \in \mathbb{R} \ / \ x^2 = a^2\} \text{ et } \overset{\bullet}{0} = \{0\} .$
= $\{a, -a\}$

 $\mathbb{R}_{/\mathcal{R}_3} = \{\{0\}, \{a, -a\} \ / \ a > 0\}$ qui peut être identifié à \mathbb{R}^+

2) Soit $\widetilde{\mathcal{R}}$ la relation de congruence modulo n définie sur \mathbb{Z} par: $x\widetilde{\mathcal{R}}y \iff (n \text{ divise } x-y)$, est bien une relation d'équivalence.

Remarques: La classe $\overset{\bullet}{a}$ est aussi noté \bar{a} , [a] et Cl(a).

1.4. Relation d'ordre

Soit \mathcal{R} une relation sur un ensemble A

- 1) R est dite relation d'ordre, si elle est réflexive, antisymétrique et transitive.
- 2) Si \mathcal{R} est une relation d'ordre, on écrit souvent $\leq_{\mathcal{R}}$ au lieu de \mathcal{R} .
- $(2.1) \leq_{\mathcal{R}} est \ dite \ relation \ d'ordre \ total, \ si \ \forall \ x,y \in A : (x \leq_{\mathcal{R}} y) \lor (y \leq_{\mathcal{R}} x)$
- 2.2) \mathcal{R} est une relation d'ordre partiel, si $\exists x, y \in A : (x \not\leq_{\mathcal{R}} y) \land (y \not\leq_{\mathcal{R}} x)$

Remarque: Deux éléments x et y sont dits comparables par $\leq_{\mathcal{R}}$, si $x \leq_{\mathcal{R}} y$ ou $y \leq_{\mathcal{R}} x$

Exemples:

1) La relation de divisibilité \mathcal{R}_d sur \mathbb{Z} n'est pas une relation d'ordre, (car elle n'est pas antisymétrique), mais elle devient une relation d'ordre partiel si on se restrient à \mathbb{N} et on la note dans ce cas \leq_d .

En effet: Soit $a, b \in \mathbb{N}$ on a:

$$(a\mathcal{R}_{d}b) \wedge (b\mathcal{R}_{d}a) \Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ et \\ a = q'b, q' \in \mathbb{N} \\ b(1 - qq') = 0, q \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \\ b = 0 \vee q = q' = 1 \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ b(1 - qq') = 0, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \\ b = 0 \wedge q = q' = 1 \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ b(1 - qq') = 0, q \in \mathbb{N} \\ a = q'b, q \in \mathbb{N} \\ b = 0 \wedge q = q' = 1 \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ b(1 - qq') = 0, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \\ b = 0 \wedge q = q' = 1 \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \\ b = 0 \wedge q = q' = 1 \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \end{cases}$$

$$\Rightarrow \begin{cases} b = qa, q \in \mathbb{N} \\ a = q'b, q' \in \mathbb{N} \\ a = q'b, q$$

Donc \mathcal{R}_d est antisymetrique sur \mathbb{N} .(Il est clair que \mathcal{R}_d est refléxive et transitive). \mathcal{R}_d est un ordre partiel sur \mathbb{N} car par exemple $(3 \nleq_{\mathcal{R}_d} 7) \land (7 \nleq_{\mathcal{R}_d} 3)$.

2) La façon avec laquelle sont rangés les mots dans un dictionnaire définie une relation d'ordre total sur l'ensemble des mots appelée **ordre lexicographique** et noté \leq_{lex} . On a par exemple $algèbre \leq_{lex}$ analyse.