0.1 Equations aux différentielles totales

Définition 0.1 L'équation différentielle

$$M(x,y)dx + N(x,y)dy = 0 (*)$$

est appelée équation aux différentielles totales si M(x,y) et M(x,y) sont des fonctions continues et dérivables telles que

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$

Les dérivées partielles $\frac{\partial M}{\partial u}$ et $\frac{\partial N}{\partial x}$ sont contenues dans un certain domaine.

Exemple 0.1 Résoudre l'équation suivante :

$$(x^3 + xy^2)dx + (x^2y + y^3)dy = 0. (1)$$

En posant $M(x,y) = x^3 + xy^2$ et $N(x,y) = x^2y + y^3$ on obtient

$$\frac{\partial M}{\partial y} = 2xy$$
 et $\frac{\partial N}{\partial x} = 2xy \Longrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Donc l'équation est une équation aux différentielles totales. Alors

$$M(x,y) = \frac{\partial u}{\partial x} \iff u(x,y) = \int M(x,y)dx$$

$$\iff u(x,y) = \int (x^3 + xy^2)dx + \varphi(y)$$

$$\iff u(x,y) = \frac{x^4}{4} + \frac{x^2y^2}{2} + \varphi(y).$$

En dérivant u(x,y) par rapport à y

$$N(x,y) = \frac{\partial u}{\partial y} \iff x^2y + y^3 = \frac{\partial u}{\partial y}$$

$$\iff x^2y + y^3 = x^2y + \varphi'(y)$$

$$\iff \varphi'(y) = y^3$$

$$\iff \varphi(y) = \frac{y^4}{4} + c_0, \qquad c_0 \in \mathbb{R}$$

et par conséquent on obtient

$$u(x,y) = \frac{1}{4}(x^4 + y^4) + \frac{1}{2}x^2y^2 + c_0, \qquad c_0 \in \mathbb{R}$$

et par suite la solution générale de l'équation (1) est donnée par

$$x^4 + y^4 + 2x^2y^2 = c, \qquad c \in \mathbb{R}.$$

Définition 0.2 (Facteur intégrant)

Supposons que le premier membre de l'équation

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

ne soit pas une différentielle totale.

Si on multiplie (1) par une certaine fonction $\varphi(x,y)$ telle que

$$\varphi M(x,y)dx + \varphi N(x,y)dy = 0 \tag{2}$$

devienne une équation aux différentielles totales, on dit que φ est un facteur intégrant.

Remarque:

Une équation Mdx + Ndy = 0 (non totale) peut admettre une infinité de facteurs intégrants.

Détermination d'un facteur intégrant

Pour que l'équation (2) soit une équation aux différentielles totales il est nécessaire et suffisant que l'on ait :

$$\frac{\partial(\varphi M)}{\partial y} = \frac{\partial(\varphi N)}{\partial x} \tag{3}$$

$$(3) \iff M \frac{\partial \varphi}{\partial y} + \varphi \frac{\partial M}{\partial y} = N \frac{\partial \varphi}{\partial x} + \varphi \frac{\partial N}{\partial x}$$

$$\iff M \frac{\partial \varphi}{\partial y} - N \frac{\partial \varphi}{\partial x} = \varphi \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$$

$$\iff \frac{M \frac{\partial \varphi}{\partial y} - N \frac{\partial \varphi}{\partial x}}{\varphi} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$$

$$\iff M \frac{\partial \log \varphi}{\partial y} - N \frac{\partial \log \varphi}{\partial x} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$$

$$\iff (4)$$

(4) est une équation aux dérivées partielles de fonction inconnue φ dépendant de deux variables x et y, la résolution de cette équation dans le cas général n'est pas toujours facile, mais il y a des cas particuliers où l'on arrive à déterminer φ .

① φ dépendant seulement de y :

On a

(4)
$$\iff M \frac{d \log \varphi}{dy} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$$

$$\iff \frac{d \log \varphi}{dy} = \frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} \tag{5}$$

d'où l'on détermine $\log \varphi$ donc φ .

Remarque Il est évident que l'on ne peut procéder ainsi que si l'expression $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ ne dépend pas de x.

2φ dépendant seulement de x:

D'une manière analogue à celle du cas précédent si l'expression $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{N}$ ne dépend pas de y. Alors

$$N \frac{d \log \varphi}{dx} = -\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y}$$

$$\frac{d \log \varphi}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$$
 (6)

d'où on peut déterminer $\log \varphi$ et par la suite on détermine φ .

Exemple 0.2 Résoudre l'équation suivante en déterminant un facteur intégrant

$$(x+y^2)dx - 2xydy = 0. (5)$$

Soit $M(x,y)=x+y^2$, et N(x,y)=-2xy, on a $\frac{\partial M}{\partial y}=2y$, $\frac{\partial N}{\partial x}=-2y$. Comme $\frac{\partial M}{\partial y}\neq\frac{\partial N}{\partial x}$ alors l'équation (5) n'est pas exacte. Cherchons maintenant un facteur intégrant en calculant

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{4y}{-2xy} = -\frac{2}{x}.$$

Donc

$$\frac{d\log\varphi}{dx} = -\frac{2}{x} \Longrightarrow \log\varphi(x) = -2\ln|x| \Longrightarrow \varphi(x) = \frac{1}{x^2}.$$

L'équation

$$\frac{x+y^2}{x^2}dx - \frac{2xy}{x^2}dy = 0$$

est une équation aux différentielles totales son intégrale générale est

$$x = ce^{\frac{y^2}{x}}, \qquad c = Const.$$