Université Ibn Khaldoun Tiaret. Département des Mathématiques Faculté des Mathématiques et Informatique $1^{\rm ère}$ anné Master L.M.D.(Maths) Année universitaire : 2022-2023 Le 08-01-2023

Examen de Topologie et Analyse Fonctionelle

Correction détaille avec Barème

Exercice1:

Montrons la proposition suivante :

(1) Montrons que

 $\|.\|_1$ et $\|x\|_2$ sont equivalentes dans un espace vectoriel X

⇔ Convergence pour l'une entraine convergence pour l'autre.

Montrons l'implication directe, pour cela supposons que les normes $\|.\|_1$ et $\|x\|_2$ sont equivalentes donc $\alpha\|.\|_1 \leq \|.\|_2 \leq \beta\|.\|_1$

Convergence de $x_n \to x$ au sens de la norme $\|.\|_2 \Rightarrow \|x_n - x\|_2 \to 0$ $\Rightarrow \alpha \|x_n - x\|_1 \to 0$ $\Rightarrow \|x_n - x\|_1 \to 0$.

 \Rightarrow Convergence de $x_n \to x$ au sens de la norme $\|.\|_1$. (2points)

Il en est de meme pour

Convergence de $x_n \to x$ au sens de la norme $\|.\|_1 \Rightarrow$ Convergence de $x_n \to x$ au sens de la norme $\|.\|_2$

Montrons maintenant l'implication reciproque. (2 points)

Soit x un point de X et soit x_n une suite convergent vers x au sens de la norme $\|.\|_1$ Donc d'apres la supposition x_n con verge vers x au sens de la norme $\|.\|_2$ donc , on peut trouver A et B, strictement positifs, tels que : $A\|.\|_2 \le \|.\|_1$, et : $B\|.\|_1 \le \|.\|_2$, ce qui prouve l'équivalence de ces normes.

(2) Soit $X = \mathcal{C}([0,1],\mathbb{R})$ l'espace des fonctions continues,

$$x:[0,1]\to\mathbb{R}$$

pour $x \in \mathcal{C}([0,1],\mathbb{R})$ on pose

$$||x||_{\infty} = \sup_{t \in [0,1]} |x(t)|, \quad ||x||_{1} = \left(\int_{0}^{1} x^{2}(t)\right)^{\frac{1}{2}}.$$

Considérons, pour $n \ge 1$, $x_n(t) = t^n$.

• Montrons que $||x_n||_{\infty} = 1$, $||x_n||_1 = \frac{1}{\sqrt{2n+1}}$

$$||x_n||_{\infty} = \sup_{t \in [0,1]} |t^n|$$
$$= 1.(1 \text{ point}).$$

$$||x_n||_1 = \left(\int_0^1 (t^n)^2\right)^{\frac{1}{2}}$$

$$= \left(\left\{\frac{t^{2n+1}}{2n+1}\right\}_{t=0}^{t=1}\right)$$

$$= \frac{1}{\sqrt{2n+1}}. \quad (2 \text{ points}).$$

• Montrons qu'il est impossible d'obtenir un encadrement du genre

$$A \leq \frac{\|x_n\|_1}{\|x_n\|_{\infty}} \leq B$$
, A et B deux constantes strictement positives.

Supposons qu'un tel encadrement existe donc

$$A \le \frac{1}{\sqrt{2n+1}} \le B$$

par passage a la limite on a

$$A < 0 < B$$

ce qui est contradictoire avec le fait que A > 0. (2points)

 \bullet L'encadrement

$$A \le \frac{\|x_n\|_1}{\|x_n\|_\infty} \le B$$

s'il existait donne

$$A||x_n||_{\infty} \le ||x_n||_1 \le B||x_n||_{\infty}$$

Ce qui donne que $\|.\|_1$ et $\|.\|_{\infty}$ ne sont pas équivalentes. (2 points)

Exercice2:

Soit $C^2([0,1],\mathbb{R}) \subset C([0,1],\mathbb{R})$ muni de la norme $||x||_{\infty} = \sup_{t \in [0,1]} |x(t)|$ l'ensemble de toutes les fonctions

$$x:[0,1]\to\mathbb{R}$$

deux fois continument dérivables vérifiant x(0) = x'(0) = 0 on considère l'opérateur

$$\mathfrak{A}: D(\mathfrak{A}) = \mathcal{C}^2([0,1],\mathbb{R}) \to \mathcal{C}([0,1],\mathbb{R})$$

est défini par

$$(\mathfrak{A}\mathfrak{x})(t) = \frac{d^2x(t)}{dt^2} + x(t), x \in \mathcal{C}^2([0,1], \mathbb{R}).$$

(1) Montrons que l'operateur \mathfrak{A} est fermé. (4 points). Soit x_n une suite telle que $(x_n, \mathfrak{A}\mathfrak{x}_n) \to (x, y)$ D'apres un theoreme vu en Analyse 3 concernant la convergence des suites de fonction

$$(\mathfrak{A}\mathfrak{x}_{\mathfrak{n}})(t) \to \frac{d^2x(t)}{dt^2} + x(t)$$
 uniformément et $x \in \mathcal{C}^2([0,1],\mathbb{R})$

donc $x \in \mathcal{D}(\mathfrak{A})$, de plus d'apres l'axiome T_2 de séparation de Hausdorff on deduit que $y = \mathfrak{A}\mathfrak{x}$ Donc \mathfrak{A} est fermé.

- (2) on considere la suite $x_n(t) = \frac{\sin nt}{n^2}$, n étant un entier naturel non nul. Montrons que la suite $\mathfrak{A}x_n$ n'a pas de limite quand $n \to +\infty$.

$$\mathfrak{A}x_n(t) = \frac{d^2 \frac{\sin nt}{n^2}}{dt^2} + \frac{\sin nt}{n^2}$$
$$= -\sin nt + \frac{\sin nt}{n^2}$$

La suite $-\sin nt$ n'a pas de limite donc la suite $\mathfrak{A}x_n(t)$ n'a pas de limite quand $n \to +\infty$. (2 points).

• Déduisons que l'opérateur $\mathfrak A$ n'est pas borné. La suite $\lim_{n\to +\infty} x_n(t) = \lim_{n\to +\infty} \frac{\sin nt}{n^2} \to 0$ donc $\lim_{n\to +\infty} x_n \to 0$ Mais $\lim_{n\to +\infty} \mathfrak A x_n$ n'existe pas. Donc $\mathfrak A$ n'est pas continue en 0 comme $\mathbb A$ cost lineaire $\mathbb A$ cost lineaire $\mathbb A$ cost lineaire $\mathbb A$ cost lineaire. \mathfrak{A} est lineaire \mathfrak{A} n'est pâs borné. (3 points).