Université IBN Khaldoun, Tiaret Département de Mathématiques Module: ANALYSE 3, Suites et Séries de fonctions

Fiche TD 3

Exercice 1: Etudier la convergence simple des suites de fonctions suivantes en précisant la fonction limite et le domaine de convergence

$$f_n(x) = \frac{1}{(1+x^2)^n}$$
, $g_n(x) = e^{-x^n}$.

$$h_n(x) = n^2 \sin(\frac{x}{n^2}), k_n(x) = nx^n(1-x)^2.$$

Exercice 2: Pour tout $n \in \mathbb{N}$, on considère la fonction

 $f_n:[0,1]\to\mathbb{R}$ définie par:

$$f_n(x) = \sin(n^2 x)e^{-n^2 x},$$

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers une fonction f que l'on précisera.
- 2. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément vers une fonction f sur [0,1].
- 3. Soit $\alpha \in]0,1[$. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur $[\alpha,1]$.

Exercice 3: Etudier la convergence simple et uniforme des suites de fonctions suivantes:

1.
$$f_n(x) = x - \frac{\sin(x)}{n}, \forall x \in \mathbb{R}.$$

2.
$$g_n(x) = \frac{nx^2 - x}{n}, \forall x \in \mathbb{R}.$$

3.
$$h_n(x) = \begin{cases} nx^n \ln(x), & \text{si } x \in]0,1]; \\ 0, & \text{si } x=0. \end{cases}$$

Exercice 4: Soit la suite de fonctions $(f_n)_{n\geq 0}$ définie par

$$f_n(x) = \ln(1 + e^{-nx}), \quad \forall x \in \mathbb{R}.$$

1. Donner le domaine de convergence simple D de la suite de fonctions (f_n) et préciser la limite f.

- 2. La convergence de la suite de fonctions $(f_n)_n$ est-elle uniforme sur D?.
- 3. Montrer que la série de fonctions $\sum f_n(x)$ converge simplement sur $]0, +\infty[$. On note par S la fonction somme de cette série.
- 4. Montrer que S est continue sur $]0, +\infty[$.
- 5. Montrer que S est décroissante sur $]0, +\infty[$.

Exercice 5: On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie par

$$f_n(x) = n^2 x (1-x)^n, \quad \forall x \in \mathbb{R}.$$

- 1. Montrer que le domaine de convergence simple de la suite de fonctions (f_n) est D = [0, 2].
- 2. La convergence de la suite de fonctions $(f_n)_n$ est-elle uniforme sur D?.
- 3. Montrer que $(f_n)_n$ converge uniformément sur $[a,1], \forall a \in]0,1[$.
- 4. Montrer que la série de fonctions $\sum f_n(x)$ converge simplement sur D.
- 5. La convergence de la série $\sum f_n(x)$ converge-elle normale sur D?.

Exercice 6: Soit la suite de fonctions $(f_n)_{n\geq 0}$ définie par

$$f_n(x) = \frac{xe^{n^2}}{1 + n^2x^2e^{n^2}}, \quad \forall x \in [0, 1].$$

- 1 Etudier la convegence simple de $(f_n)_n$ sur [0,1].
- 2 Soit $u_n = \int_0^1 f_n(x) dx$. Calculer u_n et en déduire $\lim_{n \to +\infty} u_n$.
- 3 Que peut-on déduire de la convergence uniforme de $(f_n)_n$ sur [0,1].
- 4 Etudier la convergence simple de la série de fonctions $\sum f_n$ sur [0,1].
- 5 La convergence de $\sum f_n$ est-elle uniforme sur [0,1].
- 6 Soit $S = \sum_{n=0}^{+\infty} f_n(x)$. Montrer que S est continue sur]0,1[.