Module: Mesure et Intégration

Fiche TD N 2

Exercice 1. Soit $\mathcal{T} = \{A \subset \mathbb{R} : -A = A\}$. Montrer que \mathcal{T} est une tribu sur \mathbb{R} .

Exercice 2. Soit $\mathcal{T} = \{A \subset \mathcal{P}(\mathbb{Z}) : 2n \in A \iff 2n+1 \in A \quad \forall n \geqslant 1\}$. Montrer que \mathcal{T} est une tribu sur \mathbb{Z} .

Exercice 3. Soit E, F deux ensembles non vide et $f: E \to F$ une application. Soit \mathcal{T}_F une tribu sur F.

- 1. Montrer que $f^{-1}(\mathcal{T}_F) := \{f^{-1}(B) : B \in \mathcal{T}_F\}$ est une tribu sur E.
- 2. Soit C une collection de parties de F. Montrer que $f^{-1}(\sigma_F(C)) = \sigma_E(f^{-1}(C))$

Exercice 4. Soit (E, τ) un espace mesurable, $A \subset E$

- 1. Soit $i: A \to E$ l'injection canonique. Determiner $i^{-1}(\tau)$.
- 2. Notons 1_A la fonction caracteristique de A. Determiner $1_A^{-1}(\tau)$

Exercice 5. Soit $p \in \mathbb{N}^*$ et $\mathcal{A} = \{A_i : i = 1...p\}$ une partion d'un ensemble non vide E. Trouver $\sigma(\mathcal{A})$.

Exercice 6. Soit E un ensemble infini non dénombrable et $A = (A_i)_{i \in I}$ une partition de E, où I est un ensemble infini dénombrable. Déterminer $\sigma(A)$

Exercice 7. Soit E un ensemble non vide, $A \subset \mathcal{P}(E)$. Montrer que

$$\sigma_E(\mathcal{A}) = \sigma_E(\mathcal{A}^c), \ où \ \mathcal{A}^c := \{A^c : A \in \mathcal{A}\}.$$

Exercice 8. Soient τ_1 , τ_2 deux tribus sur E. $\tau_1 \cup \tau_2$ est-elle une tribu sur E? Montrer que $\sigma_E(\tau_1 \cup \tau_2) = \sigma_E(\{A \cap B : A \in \tau_1, B \in \tau_2\})$

Exercice 9. Soit X un ensemble non vide. $A := \{\{a\}, a \in X\}$. Montrer que

 $\sigma_X(\mathcal{A}) = \{A \subset X : A \text{ est au plus dénombrable ou } A^c \text{ est au plus dénombrable} \}.$

Exercice 10. Soit E un ensemble non vide.

- 1. Quelle est la tribu engendrée par l'ensemble des parties finies de E?
- 2. Donner une condition suffisante pour qu'elle coïncide avec $\mathcal{P}(E)$.