Série de TD 1 d'Algèbre 4 :Dualité

Exercice 1: Soit

$$\mathfrak{B} = \{v_1 = (1, 1, 1), v_2 = (1, 0, -1), v_3 = (0, 1, 1)\}$$

une base de \mathbb{R}^3 .

Trouver la base duale \mathfrak{B}^*

Exercice 2: \mathbb{R}^3 rapporté à sa base canonique $\mathfrak{B} = (e_1, e_2, e_3)$.

1. Si $f_1^{\star}, f_2^{\star}, f_3^{\star} \in (\mathbb{R}^3)^{\star}$ définis par : $\forall x \in \mathbb{R}^3$,

$$\begin{cases} f_1^{\star}(x) = x_1 + x_2 + x_3 & , \\ f_2^{\star}(x) = x_2 + x_3 & , \\ f_3^{\star}(x) = x_1 + x_2 & \end{cases}$$

Montrer que $\mathfrak{B}_{1}^{*}=(f_{1}^{*},f_{2}^{*},f_{3}^{*})$ est une base $(\mathbb{R}^{3})^{*}$.

2. Déterminer la base $\mathfrak{B}_1 = (f_1, f_2, f_3)$ de \mathbb{R}^3 dont \mathfrak{B}_1^* est la base duale.

Exercice 3: Soit $E = \mathbb{R}_3[X]$, on considère les cinq formes linéaires $\phi_1, \phi_2, \phi_3, \phi_4$ et ψ définies par : $\phi_1(P) = P(0), \phi_2(P) = P'(0), \phi_3(P) = P(1), \phi_4(P) = P'(1)$ et $\psi(P) = \int_0^1 P(t) dt$.

- 1. Prouver que $\mathfrak{B}^* = (\phi_1, \phi_2, \phi_3, \phi_4)$ est une base $(E)^*$ et Déterminer sa base préduale (H_1, H_2, H_3, H_4)
- 2. Déterminer les coordonnées de ψ dans la base duale \mathfrak{B}^* .

Exercice 4 : Montrer que toute forme linéaire non nulle est surjective.

Exercice 5 : Soit E un \mathfrak{K} -espace vectoriel , $\dim E = n$ et $H \subset E$ Montrer que H est hyperplan si, et seulementsi, H est le noyau d'une forme linéaire non nulle.